retour à nos activités

Les droits intellectuels, entre autres droits : intersections, interactions et interrogations

JurisLab
J. Cabay, A. Strowel (coord.), Les droits intellectuels, entre autres droits : intersections, interactions et interrogations, Bruxelles, Larcier, coll. UB3, 2019, 304 p.

 

Pas plus qu’aucune autre matière juridique, le droit de la propriété intellectuelle ne peut s’envisager indépendamment des autres branches du droit. L’étude de leurs intersections met en évidence de nombreuses interactions, souvent complexes, lesquelles révèlent à leur tour tantôt le régime spécial dont le premier bénéficie dans le cadre des secondes, tantôt l’influence qu’il exerce sur leur développement, avec leur lot de questions nouvelles.

L’objectif de cet ouvrage est d’approfondir certaines de ces interactions dans les rapports entre les droits intellectuels, d’une part, le droit fiscal, le droit de la responsabilité civile, les droits de l’homme et les droits des données, d’autre part.

S’appuyant sur les derniers développements législatifs et jurisprudentiels aux échelons belge et européen, des spécialistes de la matière relèvent le triple défi de fournir, pour chacune de ces thématiques, un éclairage à la fois pratique, critique et prospectif.

Lien vers le site de l'éditeur

Activités similaires

Voir toutes les activités

AnthroPI – AI-Driven Harmonisation of Similarity Assessment under the Intellectual Property Anthropocentric Framework: From Uncertain to Untrue

Buiding upon prior findings from the IPSAM project, this research aims at studying the impact of Artificial Intelligence (AI) technologies on the central role given to human perception under Intellectual Property (IP) laws anthropocentric framework.   The central research question is whether AI will drive harmonisation of IP similarities, replacing the uncertainty under current case law by machine-made rules that are not faithful to the law, hence untrue. The research focuses on the similarity assessment that must be performed according to EU trademark law, design law, and copyright law (patent law will not be covered). In the frame of this research project, an interdisciplinary team consisting of an IP expert (the Principal Investigator – PI) and a postdoc researches in AI engineering, AI law and Cognitive psychology, will verify empirically whether the development and use of those tools can embed and abide by the judge-made rules for assessing IP similarities. Empirical findings will be collected through four Working Packages (WP) dedicated to the engineering of AI-powered IP similarity assessment tools (WP1), the transparency and explainability of such tools (WP2), the automations biases in their use (WP3), and the challenged they pose to the anthropocentric approach of similarity assessment in IP laws (WP4). Results of this research are expected to fill gaps in the state of the art in an entirely innovative way and to explore new avenues in IP theory and algorithmic regulation.   More info soon.
Lire la suite

Algorithmic Confusion: A Transversal Study of Computational Trade Mark Similarity

T. Vandamme, Algorithmic Confusion: A Transversal Study of Computational Trade Mark Similarity, Doctoral Thesis in Engineering and Technology, ULB, 2025, 227 p. Supervisors: Julien Cabay (JurisLab), Olivier Debeir (LISA) Jury : Jean-Marc Deltorn (Université de Strasbourg), Dev Gangjee (University of Oxford), Aniket Kesari (Fordham University, NYC), Matei Mancas (Université de Mons), Andrée Puttemans (ULB), Dimitris Sacharidis (ULB) Recent advancements in Artificial Intelligence (AI) have generated significant optimism across various fields, including Trade Mark (TM) Law. In particular, AI-driven TM retrieval systems promise to streamline the registration process by accurately identifying similar prior marks. Within the European Union, this process hinges on the complex legal test known as the Likelihood of Confusion (LoC), which includes a multifactorial assessment of the similarity of the signs. This thesis undertakes a comprehensive, transversal study to evaluate how effectively current AI systems can translate this central aspect of the legal standard into functional algorithms. By conducting a comparative analysis of two closed-source TM search engines provided by public Intellectual Property offices (namely the Benelux Office for Intellectual Property – BOIP and the European Union Intellectual Property Office – EUIPO), alongside an in-depth review of the state of the art algorithm, we assess the true capabilities of these systems and expose major methodological flaws in the development of those technologies. We curate and release two new benchmark datasets rooted in case law, aimed at enhancing the relevance and precision of these AI tools. This thesis raises the confusion around those algorithms and their ability to perform the ad-hoc similarity assessment at the heart of the confusion test, while also offering insights into the challenges and limitations of algorithmic regulation and the indispensable need for AI accountability.
Lire la suite

Vous souhaitez plus d’informations ? Contactez-nous

Inscrivez vous à la newsletter

Vous recevrez la newsletter du Centre dans vos boîtes mails et accéderez aux dernières activités et agenda du centre de droit privé de l’Université Libre de Bruxelles

Newsletter