retour à nos activités

Le RGPD dans la pratique : un exercice d’équilibre

JurisLab
B. Docquir (coord.), Le RGPD dans la pratique: un exercice d’équilibre, Bruxelles, Larcier, coll. UB3, 2021, 106 p.

 

Depuis son entrée en vigueur en 2018, le RGPD a donné du fil à retordre aux praticiens comme à l’Autorité de protection des données. La crise sanitaire a renforcé l’attention envers la protection des données personnelles, dans le cadre du suivi des contaminations et de la vaccination notamment. Ceci illustre à quel point la mise en œuvre du RGPD dans la pratique nécessite la recherche constante d’un équilibre entre des intérêts divergents : le pouvoir de contrôle des individus sur «leurs» données face aux contraintes opérationnelles des entreprises, les exigences de sécurité face à des menaces grandissantes et à un devoir de transparence et de limitation des traitements, etc.

Le droit à la protection des données est un droit fondamental, et cette dimension particulière doit être présente à l’esprit pour appréhender la construction de ces équilibres. C’est l’objet de la contribution de Victor Davio.

Franck Dumortier livre une analyse approfondie de l’obligation de sécurité dans le RGPD, à la lumière du principe de proportionnalité et de l’approche basée sur les risques.

Enfin, Benjamin Docquir propose un florilège de la jurisprudence récente de l’Autorité de protection des données.

 

Lien vers le site de l'éditeur

Activités similaires

Voir toutes les activités

AnthroPI – AI-Driven Harmonisation of Similarity Assessment under the Intellectual Property Anthropocentric Framework: From Uncertain to Untrue

Buiding upon prior findings from the IPSAM project, this research aims at studying the impact of Artificial Intelligence (AI) technologies on the central role given to human perception under Intellectual Property (IP) laws anthropocentric framework.   The central research question is whether AI will drive harmonisation of IP similarities, replacing the uncertainty under current case law by machine-made rules that are not faithful to the law, hence untrue. The research focuses on the similarity assessment that must be performed according to EU trademark law, design law, and copyright law (patent law will not be covered). In the frame of this research project, an interdisciplinary team consisting of an IP expert (the Principal Investigator – PI) and a postdoc researches in AI engineering, AI law and Cognitive psychology, will verify empirically whether the development and use of those tools can embed and abide by the judge-made rules for assessing IP similarities. Empirical findings will be collected through four Working Packages (WP) dedicated to the engineering of AI-powered IP similarity assessment tools (WP1), the transparency and explainability of such tools (WP2), the automations biases in their use (WP3), and the challenged they pose to the anthropocentric approach of similarity assessment in IP laws (WP4). Results of this research are expected to fill gaps in the state of the art in an entirely innovative way and to explore new avenues in IP theory and algorithmic regulation.   More info soon.
Lire la suite

Algorithmic Confusion: A Transversal Study of Computational Trade Mark Similarity

T. Vandamme, Algorithmic Confusion: A Transversal Study of Computational Trade Mark Similarity, Doctoral Thesis in Engineering and Technology, ULB, 2025, 227 p. Supervisors: Julien Cabay (JurisLab), Olivier Debeir (LISA) Jury : Jean-Marc Deltorn (Université de Strasbourg), Dev Gangjee (University of Oxford), Aniket Kesari (Fordham University, NYC), Matei Mancas (Université de Mons), Andrée Puttemans (ULB), Dimitris Sacharidis (ULB) Recent advancements in Artificial Intelligence (AI) have generated significant optimism across various fields, including Trade Mark (TM) Law. In particular, AI-driven TM retrieval systems promise to streamline the registration process by accurately identifying similar prior marks. Within the European Union, this process hinges on the complex legal test known as the Likelihood of Confusion (LoC), which includes a multifactorial assessment of the similarity of the signs. This thesis undertakes a comprehensive, transversal study to evaluate how effectively current AI systems can translate this central aspect of the legal standard into functional algorithms. By conducting a comparative analysis of two closed-source TM search engines provided by public Intellectual Property offices (namely the Benelux Office for Intellectual Property – BOIP and the European Union Intellectual Property Office – EUIPO), alongside an in-depth review of the state of the art algorithm, we assess the true capabilities of these systems and expose major methodological flaws in the development of those technologies. We curate and release two new benchmark datasets rooted in case law, aimed at enhancing the relevance and precision of these AI tools. This thesis raises the confusion around those algorithms and their ability to perform the ad-hoc similarity assessment at the heart of the confusion test, while also offering insights into the challenges and limitations of algorithmic regulation and the indispensable need for AI accountability.
Lire la suite

Vous souhaitez plus d’informations ? Contactez-nous

Inscrivez vous à la newsletter

Vous recevrez la newsletter du Centre dans vos boîtes mails et accéderez aux dernières activités et agenda du centre de droit privé de l’Université Libre de Bruxelles

Newsletter